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PRESSURE DISTRIBUTION ON BLUNTED FLAT PLATES

WITH SURFACE INCLINATION

(Title Unclassified)

I INTRODUCTION

This report is presented as a partial fulfillment of the requirements

of Air Force Contract No. AF 33(6 16)-6692 dated 25 May 1959.

The object of this report is to present and analyze the experimental

surface pressures measured at a nominal Mach number of 8 on blunted

flat plates. The tests are conducted in the B tunnel of the von Karman Gas

Dynamics Facility, Arnold Engineering Development Center. Surface

pressures and the heat transfer to the model were measured on two flat

plates blunted by a semi-cylindrical leading edge. The nose radii of the

two models are 0. 10 and 0. 50 inches. Both models had a chord length of

11. 0 inches.

In this report the experimental pressure distributions are presented.

The effects of angle of attack, Reynolds number and nose radius on the

surface pressure distribution are considered. Tests were conducted over

a range of 00 to 300 surface inclination. The free stream Reynolds number

varied from 0. 43 x 106 to 2. 00 x 106 per foot. The heat transfer data will

be published in a later report.
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Several existing theories are presented and their comparisons with

experimental data are made. Also presented are shadowgraphs of the

flow about each model for several angles of attack.
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II SYMBOLS

B empirical (1/2)2/3 or zero

b 6  quantity defined by Equation 43

CD nose drag coefficient defined by Equation 47

d nose cylinder diameter - inches

H stagnation enthalpy - ft2 /sec 2

M Mach number

P pressure - lbs/ft2

P quantity defined by Equation 41

Pp quantity defined by Equation 46

q local velocity - ft/sec

r nose radius - inches

Re Reynolds number

R gas constant - 1716 ft 2/sec 2 oR; model nose radius, inches

S entropy - ftZ/ sec2 ; arc length measured from stagnation point, inches

T temperature °R

u, v velocities defined in Figure 12

x chordwise direction, inches

a angle of attack - positive nose up

y ratio of specific heats
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shock stand-off distance (see Figure 12)

shock wave angle measured from free stream

0 flow deviation measured from free stream

ýL Mach angle (sin- J 1

p density - slugs/ft3

Subscripts

Mo free stream conditions

0 free stream stagnation conditions

se stagnation conditions behind a normal shock

6 local conditions in the flow field outside the boundary layer

w conditions at wall
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III APPARATUS AND PROCEDURE

A. Tunnel

All tests were conducted in the Mach 8. 0, 50 inch diameter con-

tinuous axisymmetric wind tunnel (Tunnel B) at the von Karman Gas

Dynamics Facility, Arnold Engineering Development Center, Tullahoma,

Tennessee. A complete description of this facility may be found in

Reference i.

B. Models

Both models were constructed of type number 304 stainless steel.

The surface finish was nominally 50 microinches while the skin thickness

was 0. 25 inches. The nose radii of the two models are 0. 10 inches and

0. 50 inches, each model being 11. 0 inches long. A photograph of the 0. 50

inch radius model, before being positioned in the tunnel, is shown in

Figure 1. The 0. 10 inch radius model installed in the tunnel is shown in

Figure 2. The model sting support and one cooling shoe can also be seen.

Figure 3 shows the 0. 50 inch radius model with the side and top plates

removed so that the model instrumentation is visible.

Since the same models were used in the heat transfer tests, slots

were milled longitudinally so that the skin thickness in the vicinity of the

thermocouples was nominally 0. 050 inches. The thermocouples were

installed in these slots. A more thorough and comprehensive description

of the heat transfer aspect of the models will be given in subsequent reports.

-. ' - - m w
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Static pressure tubes 1/16" O.D. with a 0. 012"' wall thickness

were installed on the model. These orifices were placed in staggered

rows to one side of the center line. Thermocouples were symmetrically

placed in identical locations on the opposite side of the center line. The

staggering technique was used to obtain a small axial placement of tubes.

The location and number of the tubes used for each model is shown in

Figures 4 and 5 and Tables I and 2 for the 0. 10 inch radius and 0. 50 inch

radius models, respectively.

C. Test Conditions

All tests were conducted at a nominal stagnation temperature of

900 0 F. Three stagnation pressure levels, namely, 100 psia, 240 psia and

480 psia, were chosen to determine the effect of Reynolds number variation

on the pressure and heat transfer results. Data obtained at the 100 psi

level was inconsistent and therefore was not included in this report. The

surface inclination of the plate varied from 00 to 300 in 2 1/20 increments.

However, only representative angles of attack of 00, 50, 100, 150, zoo

and 300 were chosen for this report.

The variations in test conditions influenced the tunnel boundary

layer which in turn affected the tunnel Mach number. The test conditions

are summarized below.
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Model II(A)

PC = Z40 psi M = 8.03

Po = 480 psi M = 8.03

Model II(B)

Po = 240 psi M = 8.03

Po = 480 psi M = 8.08
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IV DISCUSSION OF EXPERIMENTAL RESULTS

All the pressure data used in this report are "preliminary unchecked

data". Since preliminary data were used certain inconsistencies in the

data arose and were unaccountable for. Therefore, questionable data were

usually excluded from this report.

Because of the small nose radius on Model II(A), the nose region

(0ý x/d! 0. 5) was uninstrumented. Results of the pressure distribution on

the nose region of Model II(B) are shown in Figures 6 through 11. Modified

Newtonian plus Prandtl-Meyer pressure distribution closely approximates

the experimental distribution.

In general, the data are self-consistent and comparison with several

existing theories will subsequently be discussed in this report.
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V THEORETICAL ANALYSES

A. Two-Dimensional Rotational Characteristics

The method of characteristics for supersonic rotational flow can

be utilized to predict the flow field about blunted two-dimensional bodies.

However, to begin the computation, properties in the region between the

shock and body in the supersonic region must be known. Thus, the computa-

tion procedure that was utilized was divided into two categories:

1. Subsonic-Transonic Flow About a Circular Cylinder

2. 2-D Rotational Characteristics over an Arbitrary Body

Blunted by a Circular Cylinder

A description of each category with the pertinent equations follows.

1. Subsonic-Transonic Region

The flow field about two-dimensional circular cylinders has

been analyzed by several authors (Refs. 2, 3 and 4). In each method, the

technique involved in computing the flow field is quite laborious and,

consequently, time consuming. Since the object of this analysis is to

define the properties in the transonic-supersonic region of the flow and not

the details in the subsonic region, an approximate scheme was devised.

This method proceeds by assuming a shock shape. The rela-

tion defining the shock shape must be "even", hence, a shock of the following

form was used (Figure 12)

rrbA @ZQ+b4 g4 (1)r. = rb + I + b2 ?+b9
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Since the shock wave radius in the vicinity of the stagnation region is known

to be the best approximated by a concentric cylinder of radius (rb + A), the

square term must be eliminated. Therefore, a shock shape of the form

r. z rb + A + b 4 94 (2)

was used, where the parameter b4 is to be determined from mass flow

considerations. That is, equating the mass flow entering the shock (OA)

to the mass flow passing through (AB) (Figure 12) provides the necessary

cirterion to determine b4 .

Equating mass flow, and retaining only the linear terms in

the derivatives one obtains:

0pA 1 +L ('•)A(rA-Q r

pVcoYA = 8r )A(rA(rA- Adr+

0 (3)

+ LA Ar-]A+r)A(rA dr

j(A +b 4 0

Since the quantity b 4 can be expected to be small, only linear terms in b4

were retained throughout the entire analysis. The pressure at point B was

obtained from Newtonian flow. The velocity u, and density p were then

obtained from compressible flow relations.

From Croccots theorem,

-Grad S = Curl V x V (4)
yR
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expanded in cylindrical coordinates one obtains

az as u Iu IavX- -"f" = - ( + "-; -• (5)

-yR Or r Or _

But at the body

aS = 0 and I =0

hence

)B- (UB (6)

x%7 B ~r B

Differentiating the relation
1

p = Pse I - VLiI (7)

Oo Ou

in the r direction, one obtains B•-e r fn

the first integral of Equation (3) can be evaluated in terms of b 4 .

Defining
('I d rs r4b493 4

tan" s_- = tan-' -- (8)
Sdtan- dO ]3i"&b4g

which when simplified can be written as

S= P•b 4  
(9)

where
4 03

P, rB+A

In order to evaluate the second integral of Equation (3), the velocity

and density and their derivatives immediately behind the shock must be

determined, as a function of b 4 . Within the approximation considered, the
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velocity components behind the shock can now be expressed in the following

form:

u = uo + b4 uI (10)

v = vo + b4 vI (II)

P = Po + b 4 P, (12)

where

u0 U0 Sin 0

(ui [S)9 ZoSin'- uo + U2 cosZ -
(Y +1) U 0 020- 0 0

- 2 U2 Sin SinnZ

vo- ([S+n)Uo L wtang U2 +U2 ~cos 20-y-lI) cosO Y-l)+2U02CSin2

V1 ~~ ~ 2y0)U F-- 1 (y2+ ~ -
VFn[ u Sin ý - N--•-•- 0c U+U2 cos2Q -Y + INl (+0) UCO 0osO

+ 2 U O 'D c o s 0 S in 2 ]

r( +1) M•2 cos 2 Q

P L(- 1) M 2 cos 2 g+ 0D

2( y-+ 1) Mo ISin 20
P, I)M00 P12

and

Uoo - voo/vL
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In addition, the entropy immediately behind the shock (Point A,

Figure 12) can be expressed as

SAso AS,
(-l)y- = (y- 1) T +b 4(N- 1) R (13)

where

R 2 mc Cosz 0_(•.-)(y -l)M- CosY 0+2 Cos2

From Equations (10), (l i) and (12) the derivatives with respect to 0 of

the following quantities; u, v and--R--, can be obtained in the form

de Y _ delog d- loR b4 -Y +(14))M 08

N d- 1i0

With the system of equations
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0u 1 au + 0 - v" v+v uv + Lv + au

(-a-y r ILI 2 a r" r a2 r T- •r)

-YR ar8 rr =0r

az as_ u au I av

T/R rr u-+ r r 89o

a2  OS -(U au l3v)

(15)

ds as aS dr
dQ=-dQ + 6r djQ

du au au dr

d + -Fr d-

dv 8 v Ov dr
To j-0 +r dO

The six unknowns

au au av av as as
6-0, Tr'J - 7'1 5

can be determined.

The remaining term to be evaluated, 8r can be obtained from

the continuity relation

r o(pu) + 6i(pv) = 0 (16)

That i s,

ap au+-2-+ -I.j (17)ar rLv a@+v a--rv
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where every term in the square bracket is known at the shock, in terms

of b 4 .

The second integral of Equation (3) can now be evaluated in terms

of b 4 . Hence, Equation (3) is now reduced to a linear algebraic equation

which will yield the value of b 4 .

In order to perform the numerical computation, it is necessary

to know the shock detachment distance A. The results of the constant

density solution (References 2, 5 and 6) yield detachment distances which

are approximately 5516 too small at Mach 3 and 45% too small at Mach 5.

The first order solution of Whitham (Reference 2) is given by

rb = I -

(

rb r s 2X __--•lge 37k(S

and x = p'/PI - I

or more exactly 7lb is the value of Ti for which the following equation is

satisfied

0o + l)KI(X)- x K'( IN ?1 +1) I,()-X I,( Ni (19)

I1 and K1 are modified Bessel functions of the first and second kind,

respectively. I and K1 are their derivatives,

I, N)\ =+
2ik: Eo N) +I1 2 k1)-

(20)
K, IN) : K- (X) + K

2
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The results of the numerical solution of Belotserkovskii (Reference 3) are

compared to the first order solutionof Whitham (Reference 2) in the table

below:

Balotserkovskii Whitham
(Ref. 3) (Ref. 2)

M = 3 A/rb = 0.703 A/rb = 0. 305

M = 4 = 0.546 = 0.279

M = 5 = 0.481 = 0.265

In order to find the shock detachment distance at Mach 8. 00, the first order

solution and the "exact" solution of Reference 2 (Eqs. 18 and 19) were solved

and the results were A/rb = 0. 234 and 0.279, respectively. These results

were obviously too small. To determine the detachment distance, since

data at M = 8. 0 was not available in literature, Equation (18) was used as

a curve fit for Belotserkovskii's data. That is

Ib loge -(Xo+Ax) (21)

where

)o P2 -I = 4.000
Pi M=5.00

A\k ()M=8.00 - 00 M=5.00 = 0.565
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The value for the detachment distance, A, determined from the

above relation is

A/rb = 0.422

The corresponding value of b4 obtained from Equation (3) is

b4 = 0.1815

Thus the shock shape is defined as

r.s 1.422 + 0. 1815 Q 4  (22)
rb

and at 0 = 550

-s [1.576

rb

With the shock specified, the velocities u and v and the entropy

S/R and their derivatives in the r direction are known at the body and at

the shock. To obtain data in the region between the shock and the body, a

third order equation was used. In each case, the four boundary conditions

were used to solve for the four coefficients. Hence along the line, 0 = 550,

the following properties were determined at several points:

x/rb, y/rb, S/R, P/P 0o,, 0,

These data are the input to the characteristics analysis.

2. Two-Dimensional Rotational Characteristics

The analysis of the flow over blunted two-dimensional bodies has

been computed by the method of characteristics for a rotational flow.
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The equation of motion, when the total enthalpy Ho is constant

in the flow, can be expressed along the characteristic lines in the following

form

SdP d23)
-Y P sin cosjL

along the characteristic line

tan (0 + .L) = d_ (24)dx

and l dP dO - 0 (25)
Y P sinp cos~t

along the line

tan (g- _) dy (26)dx

and
dS = 0 (27)

along the streamline defined by

dy :- tan 0 (28)
dx

If the velocity vector, total enthalpy, and entropy are known at two points

A and B (see sketch), the position of a point C at the intersection of the

tangents AC to the characteristic line of the first family from A and the

tangent BC to the characteristic line of the second family from B can be

obtained since the value of jL can be calculated at A and B.

Assuming that the tangents AC and BC can be substituted for the

characteristic lines between AC and BC, the first approximation to the
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variation of flow properties between A

a• .• .S and C and B and C can be obtained from

e Equations (23) and (25) by assuming that

N the coefficients are constant and equal

to the corresponding values at A and B.

However, the variation of the entropy

along the characteristic lines must be known in order to determine P and 0

at point C.

The assumption that the entropy is a continuous function in the

region of the flow between the streamlines that pass through A and B, plus

the fact that the entropy remains constant along a streamline leads to the

equations

(s)AC SC- SA (28)

(AS)BC SC - SB (29)

and

-dS (An) + dS (30)
SC = SA + AC AC A +(dn)AC (xC xA) Cos (9+ ý

dS (An) dS (x sin ýt (31)

B SB d)BC(XC-XB) 0,os(_- A

where Asn is the gradient normal to the streamlines, and An is the normal

dn

distance between the streamline at A or B and the streamline passing at C.
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Therefore assuming that

dS) = (dS) = (dLS (32)('"AC BnnC dnAB

dS
Sc can be determined once u- is obtained from the expression

dS SB - SA (33)
SAB XC - XA Sin A xC - xB

LCos(Q+ R 9A [Cos(Q KiIB

The pressure PC and the flow deviation 0C can then be obtained from the

relations

0 A- 0 B + I LnACOSA+
C Sin LACos.A Sin LB Cos LB (34)

-Y PA 'Y PB

0 = 9 + I Sin 4ACos ý'A PA PC (35)A l P A

Shock Conditions

The determination of points on the shock were obtained from the

following shock relations,

Vnc (-I)M2o Sin? E + 2o SinE (36)C, C0 (y+I)M Sin 2
•// VTCo (+1)M

V/C - Cos E 
(37)

VNO + VTC2 V 2 
(38)

C C
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P 2yMM 2SinZ e - (-y-l)
- O ( 3 ,9 )

o (Y +l)

and the characteristic relation

I PA - PC + A - gC 0( 0- + : o(40)
"Y PA Sin ILA Co s A

The conservation of tangential momentum across the shock can be expressed

as

Voo=V CosQ +tane Sing (41)

The properties at point C (see sketch) on the shock must satisfy both the

shock and characteristic equations. Since the problem was to be performed

on an automatic computing machine, an iterative scheme on Equation (41)

was decided upon as being the most expeditious way of obtaining a solution.

(1) (2)The shock inclination, eo , at C was selected and then Eo was determined

from Equation (41).
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Boundary Conditions

To determine properties on the body

(e.g., Point C), the second family

characteristic equation (Eq. 25) and the

A and the geometry of the body are used.

Since the body is a streamline, SA = SC.

The flow deviation is known for the geometry, thus one can solve

Equation 25 directly for P. That is,

PC = PB + FY inBC 7(42)
LSinIL B cos lL B

The above equations were programmed for the Bendix G-15

digital computer. In order to systematize the computations, the flow field

was divided into three regions (Figure 13).

1. Region A is defined by the second family line from point S and

the first family line from point B.

2. Region B is defined by the body and the second family line

from point C.

3. Region C is the remaining flow field.

The computation in region C was performed along second family

lines. In this manner, the program is able to sense terminal points of the

body profile.
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Attention is currently being devoted to minimizing the computer

production time while retaining reliability. The problem is hampered

solely due to the limited capacity of the computer availabile. However,

modifications are . eing made which will substantially reduce the computer

production time. Presented in this report are the characteristic analyses

for two angles of attack, namely, a = 00 and a = 50. In a subsequent report

several additional cases will be presented, including a displacement thick-

ness analysis for which the inviscid two-dimensional characteristic will be

computed.

B. Modified Newtonian Pressure Distribution

This method for predicting the pressure distribution on the surface

of a blunted flat plate is discussed in detail in References 7 and 8. On the

flat portion of a blunted plate, the normal to the free stream direction is

equal to the compliment of the angle of incidence of the plate.

The equation relating the pressure to the plate incidence (Ref. 8)

can be written as

P
Ps/Ps = Sin'a + . oha(3

se

For a given free stream Mach number, the pressure distribution is solely

a function of surface inclination. Therefore on the constant inclination

surface of the flat plate, the pressure as predicted by Newtonian theory is

constant.
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C. Modified Newtonian Plus Prandtl-Meyer Pressure Distribution

This method attempts to modify the body pressure distribution

predicted by the Newtonian theory from the point on the body surface where

the pressure and pressure gradient is equal to that predicted by Prandtl-

Meyer flow. A more complete description of its use is given in Ref. 8.

The Prandtl-Meyer correction to Newtonian theory tends to

alleviate somewhat the overexpansion that the modified Newtonian theory

predicts.

D. Wedge Solution

This method is simply the solution to a pointed two-dimensional

wedge inclined to the free stream at the same angle as the blunted flat

plate. Theoretically, at a large distance downstream from the nose, the

pressures predicted by the blunted flat plate and the wedge solution should

be identical. For a given length flat plate, the wedge technique would

obviously be more applicable for a smaller nose radius on the blunted plate.

E. Creagerts Approximate Pressure Distribution for Blunted

Flat Plates

This technique, as outlined more completely in References 9 and

10, assumes that:

1. A detached bow shock wave exists

2. The flow field is comprised of a viscous boundary layer

adjacent to the surface of the body, plus an inviscid region
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between the boundary layer and bow shock.

3. The displacement effect of the boundary layer perturbs the

inviscid flow field.

If the above assumptions are valid then the perturbation may be

expressed as: p b 6 M•~
p +Re (44)

where

[2ý865 Tw 16 7- y(5b6  eM' T6  O.1 6 6 (N,- , (45)

From References 2, 3, 4, and 7 of Reference 9 it is further assumed that

the inviscid pressure is given by a sum of two terms: one including a

contribution due to the surface inclination and the second due to the shock

wave shape.

Therefore it follows that

Pa Pa P
-P + - (46)Po Po Po

Combining Equations (42) and (44) and multiplying both sides by Pco/Pse

-- L +I +b+ + b 6 3M/nrei (47)
P eliPse P Ieýj 1j

The inviscid pressure terms (Eq. (46)) merit some further consideration:
P•
Pa is assumed to be a function of the surface inclination.
POO
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As mentioned in Reference 9, this term is assumed to be given

by the modified Newtonian impact theory. However, as pointed out in

Section VD of this report, the surface pressure should approach that value

given by an equivalent wedge.

It is for these reasons that the chordwise pressure distributions

as given by Reference 9, have been calculated by assuming a modified

Newtonian distribution for the large nose radius model and an equivalent

wedge value for the small nose radius model.

The second contribution to the inviscid surface pressure (that due

to shock wave shape) has been computed by utilizing the blast-wave theory.

From Reference 9 this is assumed to be given by:

2/3

P[Z C% ] M (48)
poo -Y dZ

where

C -- 0. 112, and CD is given by:

x

CD d P tan Qwdx (49)
00 moo 2

0

For the body at angle of attack, the inclination of the circular nose is:

Q =90-aw

Also

x = r - r cos Ca
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The limits of integration for Equation (47) have been modified in order to

incorporate the portion of the nose which most influences the drag coefficient.

Therefore CD as suggested in Reference 9 was modified to:
r(l-sin a)

CD= 3 P tan 9wdx (50)

r(l-cos a)

The contribution to the pressure for the zero angle of attack case of each

term in Equation (45) can be seen in Figures 14 and 15 for each of the two

models.
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VI DISCUSSION OF RESULTS

The pressure distribution on two blunted flat plates were experimental-

ly determined at a nominal Mach number of 8.0 for a 00 to 300 angle of

attack range. Tests were conducted over a free stream Reynolds number

range of 0.43 x 106 to 2.00 x I0 6 per foot. The two models were blunted

by semicylindrical leading edges with nose radii of 0. 10 inches and 0. 50

inches. Both models had a chord length of 11.0 inches.

The experimental pressure distribution on the cylindrical nose of

Model If(B) (1/2" r) has been plotted and compared to the modified

Newtonian impact theory. The results are shown for several angles of

attack, namely, 00, 50, 100, 150, 200 and 300. It is generally concluded

that the modified Newtonian theory is in good agreement with experiment

in the nose region of blunt bodies (Ref. 6, page 257). One will note from

the figures (6 to 11) that the agreement with experiment is not as good as

can be expected. It appears that the model angle of attack is greater than

the value indicated on the "Preliminary Data Sheets". For example, if the

model angle of attack was 180 or 190 instead of 150 (Fig. 9), the modified

Newtonian theory would be in good agreement with experiment.

The pressure distribution on the 1/2" nose radius flat plate model

tends to approach the Newtonian value for all angles of attack (Figs. 16 to Zl

In addition, for the low angle of attack range, blast theory plus the viscous

correction (Refs. 9 and 10) accurately predicts the pressure variation on
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the flat plate. The agreement between the analysis of Reference 9 in the

forward region of the flat plate is quite poor for larger angles of attack.

The asymptotic solution for Creager's analysis for the 1/2"r model is the

Newtonian value. Therefore, even for the larger angles of attack, the blast

theory predicts reasonably well the pressures on the rearward portion of

thdi• plate. The rotational characteristics analysis has been computed for

a 00:and 50 and the results agree well with experiment.

ý'or the 0. 10" nose radius model, the pressure distribution on the flat

plate tends to approach the wedge value. Hence, the wedge value was used

as the asymptotic solution in the analysis of Reference 9. The blast solution

plus the viscous correction accurately predicts the pressure distribution on

the flat plate over the entire angle of attack range considered (Figs. 2Z to 27)

For comparison, the zero blast solution (B = 0, Eq. (48)) is also shown.

For higher arngles of attack (200-30°) this solution appears to be in slightly

better agreeryient than the blast theory. This is to be expected, since the

majority of streamlines that "wet" the body pass through the oblique portion

of the bow shockc. Hence the blunted flat plate acts more like a sharp wedge.

Several shadowgraphs of each model are shown in Figures 28 to 39 for the

entire angle of attack spectrum.
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Figure 12 -Coordinate System for the Transonic Analysis
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